Regulation of prothoracic gland ecdysteroidogenic activity leading to pupal metamorphosis.

نویسندگان

  • Keiko Takaki
  • Sho Sakurai
چکیده

The prothoracic glands of early last (fifth) instar larvae of the silkworm are inactive with regard to ecdysteroidogenesis and unresponsive to prothoracicotropic hormone (PTTH) [J. Insect Physiol. 31 (1985) 455]. In an attempt to elucidate the hormonal mechanisms that cause the inactivity, we compared the effects of PTTH, dibutyryl cyclic AMP (dbcAMP), a cAMP phosphodiesterase inhibitor (IBMX), juvenile hormone analogue (JHA) and 20-hydroxyecdysone (20E) on secretory activity of the third, fourth and fifth instar glands. Among the factors examined, feedback inhibition by 20E was indicated to be the most likely factor. Inhibition was moderate in the third and early fourth instars while 20E strongly inhibited the glands of middle fourth instar larvae. The inhibitory effect of 20E was reduced by removal of the brain and corpora allata. Once the glands were suppressed by 20E to the degree of exhibiting neither secretory activity nor responsiveness to PTTH, dbcAMP or IBMX did not elicit ecdysone secretion at all. Thus the feedback inhibition may shut down ecdysteroidogenesis although it is obscure whether it affects the intracellular transductory cascade from the PTTH receptor through cAMP. Taken together, this evidence suggests that inactivity of the gland in the early fifth instar is brought about by feedback inhibition of the glands by 20E occurring in the late fourth instar, and that this inactivity is maintained by the juvenile hormone found in the early fifth instar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/Activin signaling.

In insects, initiation of metamorphosis requires a surge in the production of the steroid hormone 20-hydroxyecdysone from the prothoracic gland, the primary endocrine organ of juvenile larvae. Here, we show that blocking TGFβ/Activin signaling, specifically in the Drosophila prothoracic gland, results in developmental arrest prior to metamorphosis. The terminal, giant third instar larval phenot...

متن کامل

The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.

The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. O...

متن کامل

Scavenger Receptors Mediate the Role of SUMO and Ftz-f1 in Drosophila Steroidogenesis

SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval-pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise l...

متن کامل

Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis.

Insect molting and metamorphosis are induced by steroid hormones named ecdysteroids, whose production is regulated by various neuropeptides. We cloned the gene and analyzed the expression of the prothoracicostatic peptide, a unique neuropeptide shown to suppress the production of ecdysteroids in the prothoracic gland of the silkworm, Bombyx mori. We also characterized a Bombyx G protein-coupled...

متن کامل

Smt3 is required for Drosophila melanogaster metamorphosis.

Sumoylation, the covalent attachment of the small ubiquitin-related modifier SUMO to target proteins, regulates different cellular processes, although its role in the control of development remains unclear. We studied the role of sumoylation during Drosophila development by using RNAi to reduce smt3 mRNA levels in specific tissues. smt3 knockdown in the prothoracic gland, which controls key dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Insect biochemistry and molecular biology

دوره 33 12  شماره 

صفحات  -

تاریخ انتشار 2003